
IT2030 – OBJECT ORIENTED PROGRAMMING – MOCK FINAL EXAM

Question 1 – Threads

a) In this question you will create two Thread classes and implement
a. Implement a Thread class called PrintThread that prints numbers 1 to 100.

The PrintThread class should extend the Thread class in your implementation.
b. Implement a Thread class called SLIITThread that prints the name “SLIIT” a

100 times.
c. Implement a class called ThreadMain class and in the main() function create

one thread each for each of the classes and run the two threads.

Save the program as Ques1a.java

b) In this question you will display the status of running threads.
a. Implement a Thread class called NumbersThread that print numbers 1 to 100.

You should also print the name of the current Thread being printed.
b. Implement a class called ThreadBase and in the main() function create three

threads of the NumbersThread class.
c. Name the three Threads as “Red”, “Blue” and “Green”
d. After starting the three threads, the main() function should print the word

“SLLIT” 100 times.
e. At the end of the main program Print the state and if the first thread is alive

using the methods getState() and isAlive()

Save the program as Ques1b.java

c) In this question you will do a Calculation and get multiple threads to perform the
calculation.

a. Implement a class called Calculation. In this class have a method called
sum(int start, int end) that calculates the sum of the numbers between start
and end. It should calculate this value and store it in a property called total.

b. Implement a getTotal() method in the Calculation class to return total.
c. Write a Thread class that stores a Calculation object, start and end values as

properties and get them from the constructor. The run method should call
the sum method of the Calculation class.

d. Create a class called ParallelTest and in the main function perform the
following.

i. Create a Calculation type object
ii. Create two threads that are used to calculate sum of the numbers 1

to 100000. Divide the work equally among the threads.
iii. Finally print the result obtained.

Save the program as Ques1c.java

Question 2 – Design Patterns

a) Create a class called Login using the Singleton Design Pattern.

a. The Login class should have a method called validateUser(String user, String
password). For this question you can return true if the user and password
values are matching otherwise return false.

b. Create a class called LoginMain. Here in the main method, create two
variables of the Login class and get objects using the Login Singleton.

c. Use the validateUser() method to validate username = “Manju”, password =
“Manju”.

d. In the main program write code to validate that the two variables of the
Login class refer to the same object.

Save the program as Ques2a.java

b) A Company produces a set of Mobile Phones and Television Sets. The Mobile

Phones are named “A10”, “X25” and “TPlus”, the TV sets are named as “Alpha 40”,
“Gamma 50” and “Theta 65”. Use the AbstractFactory Design patterns to create
these objects.

a. Create a Mobile Phone hierarchy, the MobilePhone abstract class should
contain the Model and Price.

i. Include an abstract method called Display()
ii. Create sub classes A10, X25 and TPlus that extend the MobilePhone

Hierachy
iii. Override the Display method to display the details of the phone in

each of the sub classes.

b. Create a TV hierarchy, the TV abstract class should contain the Model and the
size.

i. Include an abstract method called Display()
ii. Create sub classes Alpha40, Gamma50 and Theta65 that extend the

TV Hierachy
iii. Override the Display method to display the details of the phone in

each of the sub classes.
c. Create the AbstractFactory class and the subclasses TVFactory and

MobileFactory according to the AbstractFactory design pattern.
d. In the FactoryDemo class main() function

i. Input the Model of a Phone and a TV
ii. Get an object of the TV and MobilePhone created using the

AbsractFactory Design Pattern.

Save the program as Ques2b.java

Question 3 – Exception Handling, Collections, String, Generics
(Note this question only focuses on Exception Handling)

Save your program as Ques03.java

1) Consider the following BankDemo Application to perform deposit and withdraw amount

from the customer account. To perform these operations, you should create an Account

class and validate the withdrawal amount lest make the account overdue. You should

create custom exception class “InsufficientBalanceException”.

The sample BankDemo Application main program is given below with sample output.
Your implementation should satisfy the same.

When you withdraw more than the existing account throw InsufficientBalanceException.
When you run the program out put should be as follows.

a) Create InsufficientBalanceException class and amount should be able to pass through

the constructor of this custom exception class

b) Create Account class that holds balance and Account No. Implement operations to

display existing balance, account number and account number can be assigned

through the Constructor

c) Implement the deposit operation and that increases the existing balance in the

account

d) Implement the withdraw operation and that reduces the balance with given value. In

case if balance is not sufficient throw InsufficientBalanceException in the method and

you should handle it in the BankDemo Application. You throw this in the withdraw

operation as below

throw new InsufficientBalanceException(amount);

2) Modify the above BankDemo class to give the below output

(No need to consider the keyboard input validations in your implementation)

a) In the modified program user should enter the withdrawal amount as keyboard input

and this activity should continue as infinite loop until user response for the question

“Do you wish to continue ?” If user answers as “no” program will terminate

b) You should extend the above exception handling with including finally block. In the

finally block you should ask the above question “Do you wish to continue?”

c) If user response “yes” for the above question a) in your program should deposit the

same amount for the account and continue the withdrawal process

d) Make sure you should not duplicate the logics in the program for above modification

(Consider OOP concepts)

Question 4 – Object Oriented Concepts/Interfaces/Abstract Classes

Save your program as Ques04.java

1. Create an abstract class called Vehicle. The class should keep the following

information in fields:

 speed

 regularPrice

 colour

a) Your class should have a constructor that initializes the three instance

variables.

b) Overload the constructor so that it accept only the speed and the colour.

c) In addition, Car class has a method call getRegularPrice which returns the

regularPrice.

2. Create a sub class of Vehicle class and name it as Truck. The Truck class has

the following field.

 Weight

a) Your class should have a constructor that initializes all instance variables.

b) Override the getSalePrice() method to return the regular price based on the

weight. If the weight is greater than 2000 regular price will have 10% discount.

Otherwise, 20% discount.

3. Create a sub class of Vehicle class and name it as Bus. The Bus class has the

following field.

 Year

 manufacturerDiscount

a) Your class should have a constructor that initializes all instance variables.

b) Override the getSalePrice() method to return the sales price based on the

manufacturer Discount by subtracting the manufacturer discount from the sales

price.

4. Create MyOwnAutoShop class which contains the main() method. Perform the

following within the main() method.

a) Create an instance of Truck class and initialize all the fields with appropriate

values.

b) Create an instance of the Bus class and initialize all the fields with appropriate

values.

c) Display the sale prices of all instance.

