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I. INTRODUCTION 

Decoherence, from the perspective of a process that tends 
to reduce quantum coherence indicates that Quantum 
Random Walk may provide a fruitful testing ground for 
understanding the role played by decoherence in the 
transition from quantum to classical regime. Origin of the 
phenomenal study on the loss of quantum coherence in 
the context of Quantum Random Walk can be traced back 
to the very first practice of measurement based non-
unitary evolution of quantum walk [1]. Later studies show 
that by dephasing the coin operator, one can transform 
quantum walk on a line into a classical random walk [2]. 
Studies on decoherence in one and higher dimensional 
quantum walks [3]-[9] have broaden the horizon of our 
comprehensibility in eliminating environmentally-induced 
noises and in using decoherence to tune the properties of 
quantum walks. 

II. MODELING DECOHERENCE IN 1D QRW 

Decoherence can be introduced to a 1D quantum 
dynamical system by dephasing the coin operator. This is 
done by attaching a phase retarder 𝑅 to the coin as given 
in Eq. (1).  
 

  𝜓 𝑡   = 𝑈2
𝑡2𝑈1

𝑡1   𝜓 0                                  (1) 
 
where 𝑈1 = 𝑆.  𝕀⨂𝐶  , 𝑈2 = 𝑆.  𝕀⨂𝑅  𝕀⨂𝐶  𝕀⨂𝑅−1  , 
𝑡 = 𝑡1 + 𝑡2 , 𝑆  and 𝐶  are Shift and Coin operators 
respectively. During the first  𝑡1  time steps walker follows 
a pure quantum walk. But the walker experiences the 
effect of decoherence during the rest of the time steps (𝑡2). 

III. A NEW COIN OPERATOR 

We have implemented a two dimensional discrete-time 
quantum random walk in which the motion of second 
walker depends on increment or decrement of the position 
of the first walker [10]. This is achieved by constructing a 
global unitary coin operator in the form  
 

𝐶𝑠 = 𝐴1 ⊗𝐵1 + 𝐴2 ⊗𝐵2                            (2) 
 

where  𝐴1 =  
cos𝛼 0
sinα 0

   𝐴2 =  
0 sin𝛼
0 −cos𝛼

   𝐵1 =  
cos𝛽 sin𝛽
sin𝛽 −cos𝛽

    

𝐵2 =  
cos𝜙 sin𝜙
sin𝜙 −cos𝜙

  and 𝛼,𝛽,𝜙 ϵ[0,2π]   

 
We are particularly interested in the choice of 𝛼 =450 , 
𝛽=450  (Hadamard coin) and 𝜙=1350  as this combination 
yields fascinating results under decoherence.  

IV. OUR WORK 

We begin our analysis by introducing dephasing into one 
dimensional Hadamard walk. Phase retarder is defined as  
 

𝑅 = 𝑒
𝑖𝛽

2
𝜎𝑧 =  𝑒

𝑖𝛽

2 0

0 𝑒
−𝑖𝛽

2

                                      (3) 

 

where  𝛽𝜖[0,2𝜋)  and 𝜎𝑧 =  
1 0
0 −1

  is the Pauli spin matrix 

[2]. When no phase shift is introduced to the coin, 
Hadamard walk exhibits the typical ballistic spread in 
probability distribution for all initial conditions. But the 
distribution acquires a standard deviation comparable to 
that of the corresponding distribution of classical random 
walk when a phase retarder is embedded into the coin as 
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given in Eq. (1). Further, averaging the probability values 
of the distribution over many trials makes the resulting 
distribution convergent to a classical binomial distribution 
rapidly.   
 
Extending this idea into two-dimensional domain we have 
combined the phase retarder with different segments of 
our coin operator (𝐴1 ,𝐴2 ,𝐴1 + 𝐴2,𝐵1and 𝐵2 ) and have 
examined the distinctions among distributions. We have 
employed the techniques used in [8] to implement our two 
dimensional quantum walk numerically. Walkers are 
allowed to move on a fixed grid. Dynamical evolution of 
motion lasts for 50 time steps and decoherence is applied 
after 10th time step for the rest of the motion. Final 
distribution has been plotted after averaging the motion 
over 25 trials. All the Bell States along with the four 
product states have been taken into consideration when 
selecting initial conditions.  

V. RESULTS AND DISCUSSION 

As we observed, introduction of the phase retarder causes 
the motion of both walkers to become confined to the 
neighbourhood of their commencing positions as 
illustrated in FIG. 1-6. Further, we found that this 
behaviour has no dependence on where the retarder is 
placed (see the figures).   
 
 

 
FIG. 1 : Probability distribution for 𝜓+ state  

with no decoherence 
 

 

 
FIG. 2: Probability distribution for 𝜓+ state when phase retarder is 

applied to 𝐴1 + 𝐴2 

 
 

 
FIG. 3: Probability distribution for 𝜓+ state when phase retarder is 

applied to 𝐵1  

 
 

 
FIG. 4: Probability distribution for 𝜓+ state when phase retarder is 

applied to 𝐵2  
 

 

 
FIG. 5: Probability distribution for 𝜓+ state when phase retarder is 

applied to 𝐴1  

 
 

 
FIG. 6: Probability distribution for 𝜓+ state when phase retarder is 

applied to 𝐴2  

 
 



Apparently, the area of confinement is independent from 
the initial condition but showcases sensitivity to the 
presence of the phase retarder in the coin operator. When 
phase retarder is applied either to matrix  𝐴1or 𝐴2 of the 
coin operator, both walkers occupy a minimum area 
relative to other distributions in this study. 
 
Moreover, unitary condition is well preserved while 
dephasing is functioning on 𝐴1 + 𝐴2 , 𝐵1and 𝐵2  individually. 
Yet, a non-unitary and collapse-like behaviour springs out 
when phase shifter is only attached to either matrix 𝐴1 or 
𝐴2. Based on these observations one can safely state that 
upon the appearance of decoherence in the motion of the 
first or the second walker, the whole evolution gets 
trapped into a region about the starting point. This 
manifestation is the very antithesis of 2D HW in which the 
trapping is found along a single direction according to the 
presences of phase retarder in the coin. (FIG. 7and FIG. 8) 
In addition, it is not possible to achieve a non-unitary or 
apparent collapse-like behaviour by merely introducing 
segment-wise dephasing into 1D components of the 2D 
Hadamard coin operator. 
 

 
FIG. 7: Probability distribution of Hadamard walk for 𝜓+ state with 

no decoherence 
 

 
FIG. 8: Probability distribution of Hadamard walk for 𝜓+ state when 

phase retarder is applied to first coin 

 
Having been guided by the preceding work we have 
developed a discrete quantum-classical hybrid walk in 
which the motion of the first walker is governed by a 
classical coin and that of the second walker is governed by 
𝐵1and 𝐵2  conditional upon the coin toss of first walker. 
With an unbiased classical coin, a ‘Bell Shaped’ probability 
distribution appears in the motion of both walkers even 

though the second walker is controlled by a quantum coin 
operator. This unexpected peculiarity in the motion of the 
second walker can be explained by modifying Eq. (1).          
Defining the phase retarder in the following way,    

 

                                     𝑅 = 𝜎𝑥 =  
0 1
1 0

                                           (4)                                   

  

unitary operators of the motion can be expressed as  
 

𝑈1
′ = 𝑆.  𝕀⨂𝐵1  and 

 𝑈2
′ = 𝑆.  𝕀⨂𝐵2 = 𝑆.  𝕀⨂𝑅  𝕀⨂𝐵1  𝕀⨂𝑅−1           (5) 

 
With the help of above operators, initial state of the second 
walker can be evolved according to the outcome of the 
classical coin toss of the first walker. Due to this unique 
relationship between  𝐵1  and 𝐵2via 𝑅 in 𝑈2

′ , decoherence 
tends to appear in the second walker’s motion and yields 
us with a ‘Bell Shaped’ probability distribution. Typical 
ballistic spread can be obtained in the second walker’s 
motion whenever the walker moves in obedience to a 
single coin (𝐵1 or 𝐵2) irrespective of the first coin toss.  

VI. CONCLUTION 

It is plausible to state that decoherence can be useful in 
controlling certain features of quantum random walk. On 
the other hand this ability can be utilized to gain a deep 
understanding of decoherence and how it functions on 
pure quantum systems leaving their evolution in peril. 
This paper has attempted to shed some light on the 
mysterious role played by decoherence in moving from 
quantum to classical regime which is yet to be revealed.   
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