Handbook of Bioremediation Physiological, Molecular and Biotechnological Interventions Edited by Mirza Hasanuzzaman and Majeti Narasimha Vara Prasad ## HANDBOOK OF BIOREMEDIATION Physiological, Molecular and Biotechnological Interventions #### Edited by #### Mirza Hasanuzzaman Professor, Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh #### Majeti Narasimha Vara Prasad Emeritus Professor, School of Life Sciences, University of Hyderabad, India ### Contents | Contributors
About the editors
Preface
Acknowledgments | xiii
xix
xxiii
xxv | 5 Physiological and biochemical mechanism favored by plants for metal toxicity 6 Enhancing metal toxicity tolerance in edible plants References 4. Phytoextraction of heavy metals by | 34
36
40 | |---|-----------------------------|--|--| | 1 | | weeds: Physiological and molecular | | | Bioremediation of inorganic pollutants | 3 | intervention
PANKAJ PATHAK AND DEBLEENA BHATTACHARYA | | | Concept and types of bioremediation MENG WANG, SHIBAO CHEN, XINGYONG JIA, AND LI CHEN Introduction Concept of bioremediation—A convenient solution to the contamination of inorganic pollutants Types of bioremediation Challenges for bioremediation Conclusion and future prospects References | 3 | 1 Introduction 2 Different weeds used for phytoextraction 3 Physiological mechanism for removal of HMs 4 Molecular mechanism for HM removal 5 Improvising weed for increasing phytoextraction 6 Conclusions References 5. Phytomanagement of As-contaminated matrix: Physiological and molecular basis | 49
50
51
53
56
57
57 | | 2. The use of industrial and food crops for the rehabilitation of areas contaminated with metal(loid)s: Physiological and molecular mechanisms of tolerance PATRÍCIA VIDIGAL, LUÍSA C. CARVALHO, ERIKA S. SANTO | oS, | SUMBAL IFTIKHAR, VEYSEL TURAN, HAFIZ MUHAMMAD TAUQEER, BILAL RASOOL, MUHAMMAD ZUBAIR, MAHMOOD-UR-RAHMAN, MUHAMMAD ASAF KHAN, SHAMIM AKHTAR, SHAHBAZ ALI KHAN, ZEESHAN BASHARAT, IMMAD ZULFIQAR, JAVED IQBAL, MUHAMMAD IQBAL, AND PIA MUHAMMAD ADNAN RAMZANI | | | AND MARIA MANUELA ABREU Physiological and molecular mechanisms of metal(loid)s tolerance in plants Rehabilitation with industrial and food crops Final remarks Acknowledgments References | 9
14
16
16 | Introduction Arsenic in the environment Chemistry of As with P, S, and Fe As toxicity in plants Remedial measures for the mitigation of As bioavailability and toxicity in contaminated soils Conclusion and future perspective | 61
62
63
64
66
73 | | 3. Mechanistic overview of metal tolerance is edible plants: A physiological and molecular perspective AMIT KUMAR, ASHISH K. CHATURVEDI, U. SURENDRAN, AFTAB A SHABNAM, AJEET SINGH, S.N. VINODAKUMAR, BORSHA TAMULY, SANDEEP K. MALYAN, SHAKEEL A. KHAM.M.S. CABRAL-PINTO, P. RAJA, AND KRISHNA K. YADAV 1. Introduction | | References 6. Metallothionein-assisted phytoremediation of inorganic pollutants. ADITYA BANERJEE AND ARYADEEP ROYCHOUDHURY 1. Introduction 2. MTs: An overview 3. Roles of MTs in phytoremediation of HMs | 73
81
81
82 | | 2 Status and sources of metal contamination 3 Positive aspects of metals in plant metabolism 4 Adverse impact of metal toxicity on morphological, | 24
24 | = 0 mm | 86
86
87
87 | | physiological, and yield traits of edible plants | 31 | References | | | | | C | ntents | | | |---|---|---|----------------|--|------| | P | eferences | | nenes | | xi | | | urther reading | 645 | 9 Poter | ntial exposure pathways | 682 | | 1 (| arther reading | 646 | 10 Envir | conmental transport and fate | 682 | | 4 | 1 Molecular and collular above C 1 | | 11 Trans | formation and degradation | 684 | | 41. Molecular and cellular changes of arbuscular | | 12 Trans | genic plants | 685 | | | mycorrhizal fungi-plant interaction in pesticide | | References | | 686 | | | | ontamination | | | | | | LAÍZE APARECIDA FERREIRA VILELA AND MÉRCIA MARIA
DAMÁSIO | | 44. Remediation of organic pollutants by Brassica | | | | | Di | AMASI() | | species | 1 | orea | | 1 | Introduction | | MUHAMM | AD ASHAR AYUB, MUHAMMAD USMAN, | | | | Arbuscular mycorrhizal fungi | 649 | MUHAMMA | AD UMAIR, MUHAMMAD RIZWAN AMER RASI II | | | 3 | Effect of pesticides on diversity and development | 650 | AND MUHA | AMMAD ZIA UR REHMAN | Ο, | | | of arbuscular mycorrhizal fungi and mycorrhizal plants | | 1 1 | | | | 4 | Molecular chapter of the art in L. L. and the contribution of | 650 | | luction | 689 | | • | Molecular changes of mycorrhizal plants in pesticide-
contaminated soils | | 2 Types, | sources, and fate of organic pollutants in the | | | 5 | | 653 | | onment | 690 | | R | Final considerations and future perspectives ferences | 654 | 3 Enviro | onmental concerns associated with organic | | | 110 | refrees | 654 | polluta | | 691 | | 47 | Biodagradation of 1 1 | | 4 Physio | ological, morphological, and biochemical aspects | | | n1. | Biodegradation of explosives by transgenic | | of Bras | ssica species | 691 | | ^ | ants | | 5 Growt | h of brassica on contaminated soils | 692 | | JIP | SI CHANDRA, ROSELINE XALXO, NEHA PANDEY, | | 6 Mecha | misms of phytoremediation in Brassica | 692 | | AN | ID S. KESHAVKANT | | 7 Microb | oial interactions of Brassica to remediate organic | | | 1 | Introduction | | polluta | ints in soils | 694 | | 2 | | 657 | 8 Use of | organic and inorganic amendments to accelerate | 271 | | 3 | Classification of explosives | 658 | the phy | ytoremediation potential of Brassica | 695 | | 4 | Prospects for biodegradation of explosives by plants | 660 | 9 Safe di | sposal of contaminated Brassica plants | 695 | | 7 | Enhancing biodegradation through genetic modification | | 10 Prospec | cts | 695 | | 5 | | 662 | References | | 696 | | 5 | Uptake and metabolism of explosives | 663 | | | 070 | | 6 | Biodegradation of TNT | 664 | 45. Biore | mediation of organic contaminants | | | 7 | Biodegradation of RDX | 668 | based on 1 | biowaste composting practices | | | 8 | Biodegradation of HMX | 669 | FLORIN-CON | NSTANTIN MIHAI, RAMÓN PLANA, MOHAMMAI | | | 9 | Biodegradation of IMX | 670 | J. TAHERZAI | DEH, MUKESH KUMAR ASWATHI, AND |) | | 10 | Biodegradation of nitrate esters | 670 | CHUKWUNC | DNYE EZEAH, | | | 11 | Conclusions and future prospects | 671 | | | | | | mowledgments | 672 | 1 Introducti | | 701 | | \efe | erences | 672 | 2 Compostii | ng as a sustainable biowaste management practice | 702 | | 12 | D 1 11 | | 3 Bioremedi | iation through composting of organic wastes | 703 | | 1). | Polychlorinated biphenyls (PCBs): | | 4 Land farm | ing combined with composting of biowaste | 711 | | רו | aracteristics, toxicity, phytoremediation, and | | 5 Conclusio | ns | 712 | | ise | of transgenic plants for PCBs degradation | | References | | 712 | | NE | EQA MUNAWAR, MUHAMMAD SOHAIL AKRAM | | 46 Rioman | modination C | | | 1UI | HAMMAD TARIQ JAVED, AND MUHAMMAD SHAHID | | | mediation of organic dyes using plants | | | 1 | Introduction | | M.C.M. IQBAI | L AND D.M.R.E.A. DISSANAYAKE | | | 2 | | 677 | 1 Introduction | | | | 3 | Regulatory history Production and uses | 678 | | | 715 | | | Immount/ | 678 | | organic pollutants | 717 | | 4 | Import/export | 678 | 3 Implement | W 1 | 723 | | 5 | Cl 1 | 678 | 4 Concludin | g remarks | 723 | | 6 | Chemical composition | 679 | References | | 724 | | /
e | Sources of PCBs | 681 | | | | | 8 | Toxicity of PCBs | 681 | Index | 7 | 27 |