

PURSE 2025

PERADENIYA UNIVERSITY INTERNATIONAL RESEARCH SYMPOSIUM AND EXPOSITION

Navigating the Future: A Multidisciplinary Perspective

PROCEEDINGS

Volume 26

28th and 29th August 2025

<https://doi.org/10.63967/AULT4918>

Testing of Gas Sensing Performance of Zeolite-Modified ZnO Nanomaterials

J.M.S.G.B. Navarathne^{1,2}, M.D.R. Perera¹, H. Rathnayake¹, M. B. Wijesinghe², L. Jayarathne^{1*}, A. Bandara²

¹*National Institute of Fundamental studies, Hantana Road, Kandy 20000, Sri Lanka*

²*Department of Chemistry, University of Peradeniya, Peradeniya 20400, Sri Lanka*

**lakmal.ja@nifs.ac.lk*

Zinc oxide is a semiconductive material that is highly sensitive to pollutants and is used in semiconductive gas sensors. These materials have low selectivity and require high operating temperatures which is usually around 350°C. This study aims to make the material selective towards specific air pollutants and reduce the operating temperature of ZnO by incorporation it into zeolite. The resistance of ZnO-incorporated zeolites was measured under the influence of N₂O using a custom-built setup. The material was plated on a glass slide in the middle of two aluminium strips to make a simple resistor using ZnO-incorporated zeolite. A known resistor is taken and a voltage is supplied between the fabricated resistor and the known resistor. The fabricated glass slide is placed inside the material testing chamber and is connected to the circuit as the unknown resistor and the voltage is measured between the known resistor when the material is in an inert environment (V_i) and in the presence of a known N₂O concentration (V_r). Using the equation (V_r-V_i)/V_i the response of the material is taken. At 5, 25, 50, 75, 100 ppm the material gave a highest response of 1.83, 1.73, 1.74, 1.73, 1.91, respectively. The fluctuation of the reading between high and low response readings is an indication that the material enters an equilibrium between adsorption and desorption of N₂O. when N₂O is removed and when nitrogen is introduced the sensor response value significantly drops specially for low N₂O gas concentrations. In conclusion, the material changes resistivity in the presence of N₂O but also desorbs shortly. As future directions, the material will be tested against different types of gases to get a more advanced understanding of the sensing capacity of the material.

Keywords: Gas sensing, zeolite, ZnO nanoparticles