


7th and 8th November 2025

RESCON 2025 LS 04

BIO-ORGANO-MINERAL FERTILISER APPLICATION PROMOTES CARBON SEQUESTRATION AND STABILISATION IN RICE ROOT-ZONE SOILS

S.N.B. Ekanayake¹, A.J.M.S.H. Jayasekara¹, M. Premarathna^{1*}, G. Seneviratne¹, H.M.S.P. Madawala² and B.S. Nanayakkara²

¹Microbial Biotechnology Unit, National Institute of Fundamental Studies, Kandy, Sri Lanka.

²Department of Botany, University of Peradeniya, Peradeniya, Sri Lanka.

*mahesh.pr@nifs.ac.lk

Limited land availability restricts soil carbon sequestration (SCS), highlighting the need for improved, climate-beneficial techniques for farmers. This study explores the potential for SCS and stabilisation through the use of biofilm biofertiliser (BFBF) in combination with modern bio-organo-mineral fertilisers (BOMF). Field experiments were conducted in Ampara, Anuradhapura, Polonnaruwa, and Puttalam in Sri Lanka, during the wet season in 2023/2024. Three previously optimised fertiliser treatments; (a) BOMF practice (500 kg NPK BOMF ha⁻¹ + 2.5 L BFBF ha⁻¹), (b) hybrid practice (225 kg PK BOMF ha⁻¹ + 62.5 kg CF N ha⁻¹ + 2.5 L BFBF ha⁻¹), and (c) chemical fertiliser (CF) practice (340 kg CF NPK ha⁻¹), and a (d) control (no fertiliser) were applied in 10×10 m² rice plots in a randomised complete block design with three replicates in each site. Root-zone soil samples were collected at a depth of 0.25 m and air-dried for measuring soil organic C (SOC) and labile C (SLC) (mg kg⁻¹), which were used to calculate SCS. Fourier transform infrared spectroscopic diagnostic bands; water-soluble C (~3400 cm⁻¹), aliphatic B-humin (~2920 and 2850 cm⁻¹), ketones in humin residues (~1730 cm⁻¹), and humified-aromatic stable C (~1620 - 1650 cm⁻¹) were used to measure C mineralisation and stabilisation. The results indicated that the hybrid practice sequestered significantly (p < 0.05) higher quantities of C (41.75 Mg ha⁻¹) than the CF practice (24.91 Mg ha⁻¹). In addition, the hybrid practice also exhibited significant (p < 0.05) increases in water-soluble C, aliphatic B-humin, ketones in humin residues, and humified-aromatic stable C contents by 66%, 10%, 66%, and 59%, respectively, compared to the CF practice. In conclusion, both labile and stable carbon fractions increase with the application of BOMF-based hybrid practices, suggesting a promising and climate-smart approach to enhancing SCS in rice cultivation.

Financial assistance from Ministry of Science and Technology, Sri Lanka (Grant No. 2507) is acknowledged.

Keywords: Biofilm biofertiliser, Carbon sequestration, Climate-smart agriculture, Rootzone soil