

Proceedings of the YOUNG SCIENTISTS' CONFERENCE ON MULTIDISCIPLINARY RESEARCH

VIRTUAL INTERNATIONAL CONFERENCE

2025

Organized by
The Young Scientists' Association
National Institute of Fundamental Studies, Sri Lanka.

Antioxidant and antidiabetic activities of hot water extracts of unripe *Musa paradisiaca* and *Doona macrophylla* Thwaites

U.I. Hettiarachchi^{1,2,3}, H.A.K.D. Premasiri¹, M.T. Napagoda³, K.G. Nelum P. Piyasena^{1*},
N.K.B. Adikaram¹, L. Jayasinghe¹

¹National Institute of Fundamental Studies, Kandy, Sri Lanka

²Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka

³Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Sri Lanka

*nelum.pi@nifs.ac.lk

Musa paradisiaca (ash plantain), a member of the Musaceae family, has been utilized as a food source and in traditional medicinal practices across various cultures. *Doona macrophylla* Thwaites (maha beraliya) is an endemic flowering plant to Sri Lanka. This study primarily aims to evaluate the biological activities of the edible parts of *M. paradisiaca* and *D. macrophylla*, as current literature offers limited data on their bioactivity when consumed in forms consistent with traditional dietary practices. The fresh edible parts of *M. paradisiaca* and the dried seeds of *D. macrophylla* were washed, cut, or ground, then boiled with hot water at 100 °C for 15 minutes in a hot water bath and freeze-dried. The antioxidant properties of crude extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) assays. The assays were conducted in a concentration range of 31.25 – 1000 mg L⁻¹. According to the DPPH assay results, *M. paradisiaca* peel (IC₅₀ 29.928±11.431 mg L⁻¹) and *D. macrophylla* (IC₅₀ 32.88±2.98 mg L⁻¹) showed strong antioxidant activity, while *M. paradisiaca* fruit (IC₅₀ 1542.10±131.63 mg L⁻¹) had weak antioxidant activity compared to the positive control, ascorbic acid (IC₅₀ 7.90×10⁻³±0.10 mg L⁻¹). In the FRAP assay, all the crude extracts: *M. paradisiaca* peel (7.64±0.11×10³ μmol Fe²⁺/g), fruit (5.32±0.17×10³ μmol Fe²⁺/g), inflorescence (6.54±0.19×10³ μmol Fe²⁺/g), and *D. macrophylla* (7.00±0.10×10³ μmol Fe²⁺/g) exhibited bioactivity compared to the positive control, Trolox (17.68±0.51×10³ μmol Fe²⁺/g). The antidiabetic potential was evaluated using the α-amylase inhibition assay at 1000 mg L⁻¹. The highest percentage inhibition was observed in *M. paradisiaca* fruit (69.09±3.07%), while *M. paradisiaca* peel (67.96±7.81%) and *D. macrophylla* (64.41±3.72%) exhibited bioactivity compared to acarbose (57.51±4.33%). In conclusion, *M. paradisiaca* peel showed strong, and fruit showed weak antioxidant potential as evidenced by DPPH and FRAP assays. All crude extracts showed inhibition potential against the α-amylase enzyme at 1000 mg L⁻¹.

Keywords: α-amylase inhibition, bioactivities, DPPH, food, frap