

FACULTY OF GRADUATE STUDIES
UNIVERSITY OF COLOMBO

ANNUAL RESEARCH CONFERENCE 2025

Resilience and Innovation through
Multidisciplinary Research

Enhanced Supercapacitor Performance through MnO₂-doped Coconut Shell-Derived Activated Carbon Electrodes

R.R.M.M.N.B. Bambaradeniya¹, A.P.S.P. Jayathilaka², D.J.D.S. Gamage³ and G.R.A. Kumara⁴

National Institute of Fundamental Studies, Kandy, Sri Lanka^{1,2,3,4}

Postgraduate Institute of Science, University of Peradeniya, Sri Lanka²

Abstract

Increasing demand for efficient energy storage has intensified research into sustainable supercapacitor electrode materials. Electrochemical double-layer capacitors (EDLCs) offer rapid charge-discharge kinetics and high-power density but remain limited by low energy density and high costs. This study investigates MnO₂ doping optimisation in coconut shell-derived activated carbon to enhance supercapacitor performance while maintaining cost-effectiveness and sustainability. Coconut shells were carbonised in a low-oxygen environment, crushed, washed, and dried at 150°C. Steam activation was performed at 900°C for 2 hours, followed by disk milling. Electrodes were prepared by mixing 0.5 g activated carbon with 0.05 g polyvinylpyrrolidone (PVP) binder in 10 ml isopropanol, with MnO₂ doping at 2%, 4%, 6%, 8%, and 10% (w/w of the activated carbon mass). The mixture was then spray-coated onto titanium current collectors at 150°C and sintered at 200°C for 20 minutes. Finally, the symmetric cells were assembled with filter paper separators and 2.5 M H₂SO₄ electrolyte. Raman spectroscopy revealed D-band (1352 cm⁻¹) and G-band (1603 cm⁻¹) peaks with an I_D/I_G ratio of 1.08, indicating an optimal balance between conductivity and surface reactivity. Electrochemical performance was evaluated through cyclic voltammetry. The 8% MnO₂-doped electrode achieved optimal performance with a specific capacitance of 51.47 F g⁻¹ and energy density of 7.15 Wh kg⁻¹, representing an 80% improvement over undoped samples (23.73 F g⁻¹). Other concentrations showed: 2% (33.82 F g⁻¹), 4% (30.68 F g⁻¹), 6% (28.62 F g⁻¹), and 10% (32.66 F g⁻¹). Electrical conductivity improved from 13.87 S m⁻¹ for undoped electrodes to 150.88 S m⁻¹ at optimal 8% doping. Enhanced performance results from synergistic double-layer capacitance and pseudocapacitive behaviour through MnO₂'s multiple oxidation states. At optimal concentration, MnO₂ particles are well dispersed within the carbon matrix, maximising faradaic reactions without blocking pores. Lower concentrations provide insufficient pseudocapacitive contribution, while excessive doping causes agglomeration and reduced electrolyte accessibility. This study demonstrates the successful utilisation of coconut shell waste for sustainable supercapacitor electrodes. The optimal 8% MnO₂ doping significantly enhances electrochemical performance while maintaining cost-effectiveness, contributing to next-generation energy storage solutions.

Keywords: Supercapacitor, Activated Carbon, Coconut Shell, MnO₂ Doping, Energy Storage