Proceedings of the International conference on

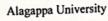
Advanced Materials for Clean Energy and Health Applications

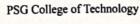
March 27 & 28, 2025

AMCEHA - 2025

University of Jaffna, Sri Lanka

Organizers


Partners



University of Oslo

Eastern University of Sri Lanka

National Institute of Fundamental Studies

Comparative analysis of the oil absorbancy in expanded Needle. type and platy-type graphite samples from sri lanka

B.K.S.V. Rodrigo¹, P.P.B. Gunarathne², G.R.A. Kumara¹

¹Department of Material Processing and Device Fabrication. National Institute of Fundamental Studies, Kandy, Sri Lanka sachinrodrigo@gmail.com

Expanded graphite (EG), produced by intercalating and applying heat, exhibits a porous and oleophilic structure, making it highly effective for oil absorption and environmental remediation. This research aims to study the oil absorption capacity of needle-type and platytype graphite samples in Sri Lanka. Graphite samples were intercalated using a mixture of concentrated sulfuric and nitric acid (8:1) v/v ratio, followed by washing with ultrapure water, then heated at 600 °C for 15 minutes to expand into worm-like structures, with slight damage to the sheets. Regarding oil absorption capacity, needle-type EG exceeded platytype EG, with 1g absorbing 68.62 g against 34.30 g, respectively. The evidence suggests that the main sorption mechanism is based on the degree of exfoliation according to the extent of expansion. The intensity ratios of the D-band at 1353 cm⁻¹ to the G band at 1580 cm⁻¹ in Raman spectra were used to determine different degrees of exfoliation and defect density in these materials. Needle-type graphite had an I_D/I_G ratio of 0.044, and its defect density (nD) was calculated as 1.51×10^{10} cm⁻², while platy type I_D/I_G ratio stood at 0.012 and a defect density of 0.412×10¹⁰ cm⁻². Heat treatment reduced defect density by factors of 1.21 and 4.27 for needle-type and platy-type graphite, respectively. This reduction is attributed to the removal of oxygen and sulfur functionalities by heat treatment, increasing sp² hybridized graphitic carbon sites. Additionally, the smaller crystal size of needle-type EG (377.05 nm) compared to platy-type EG (1345.51 nm) gave it a greater surface area for oil absorption. The absorbed oil can be recovered by simple squeezing, allowing the reused

Keywords: Expanded graphite, Degree of exfoliation, Defect density, Oil absorption

