


PROCEEDINGS

11th International Conference on Multidisciplinary Approaches -2025

"Bridging Gaps and Inspiring Innovations in Multidisciplinary Research"

Organized by Faculty of Graduate Studies University of Sri Jayewardenepura Nugegoda, Sri Lanka

3rd April 2025

11th International Conference on Multidisciplinary Approaches - 2025

Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka ISSN: 2386 – 1509

TO COLUMN TO COL

PP - 08

Copyright © iCMA

ENHANCED EFFICIENCY IN DYE-SENSITIZED SOLAR CELLS USING LANTHANUM OXIDE AND TIN OXIDE COMPOSITE PHOTOANODES SENSITIZED WITH AN N719 DYE

Dayarathne BANYP¹, Weerasinghe MIU^{1,2} and Kumara GRA^{1*}

¹National Institute of Fundamental Studies, Sri Lanka ²Postgraduate Institute of Science, University of Peradeniya, Sri Lanka grakumara2000@yahoo.com

Abstract

Dye-sensitized solar cells with a SnO₂/ZnO composite photoanode have proven to be a viable alternative to the cells with a TiO₂ photoanode as they exhibit photoconversion efficiencies viable for electricity generation. This paper investigates the performance of a similar SnO₃/La₂O₃ composite photoanode. Metal-oxide films were prepared using a colloidal solution containing a fixed mass of SnO₂ and masses of La₂O₃ ranging from 0 g to 0.10 g with 0.02 g increments, which was sprayed onto clean FTO (Fluorine-Doped Tin Oxide) glass plates preheated at 80°C using the spray pyrolysis technique, and these films were sensitized with N719 dve. J-V curves were obtained for each cell while exposed to 1 sun illumination, with photo-voltaic parameters obtained from each graph: short circuit current, open circuit voltage, fill factor, and photoconversion efficiency. The Bestperforming photoanode achieved an efficiency of 2.10%, which is a 31% improvement in efficiency compared to the photoanode consisting of only SnO₂ which achieved an efficiency of 1.60%. This was further supported by IPCE (Incident Photon-to-electron Conversion Efficiency) spectra obtained for each type of cell: the optimum SnO₃/La₃O₃ photoanode demonstrated a higher IPCE of 48% at wavelength 530 nm compared to the SnO₂-only cell IPCE value of 34 % at wavelength 515 nm. We conjecture that the La₂O₃ nanoparticles formed a thin-film barrier at the photoelectrode/electrolyte interface similar to the ZnO thin-film barrier formed in the SnO₂/ZnO composite photoanode, which created a potential barrier between the two types of nanoparticles due to the conduction band minimum of the La₂O₃ being higher than that of the SnO₂. We surmise that an electron recombination-suppression effect caused by the potential barrier preventing electrons in the photoanode recombining with the dye-cation or electrolyte produces these higher efficiencies. These findings expose the potential utility of using lanthanum oxide to enhance efficiencies of Dye-Sensitized Solar Cells.

Keywords: Photoanode, Lanthanum oxide, Tin oxide, Composite photoanode, Dye-Sensitized solar cell