

Proceedings of the

YOUNG SCIENTISTS' CONFERENCE ON MULTIDISCIPLINARY RESEARCH

VIRTUAL INTERNATIONAL CONFERENCE

2025

Organized by
The Young Scientists' Association
National Institute of Fundamental Studies, Sri Lanka.

Comparative bioactivity of *Sargassum sp.*, *Hypnea sp.*, and *Chaetomorpha sp.* collected from Kalpitiya and Udappuwa during the northeast monsoon

W.M.Y.B. Wanninayake^{1,2}, S.A.D. Chathurangi¹, N.K.B. Adikaram¹, L. Jayasinghe¹, K.G.N. Piyasena^{1*}

¹National Institute of Fundamental Studies, Kandy, Sri Lanka

²Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura

*nelum.pi@nifs.ac.lk

This study examined the bioactivity of methanolic extracts from three species of marine macroalgae: *Sargassum sp.* (collected from Kalpitiya), *Hypnea sp.*, and *Chaetomorpha sp.* (both collected from the Chilaw-Udappuwa) during the northeast monsoon season. In this study, the antioxidant capacity was evaluated using DPPH radical scavenging and FRAP assays. Additionally, cytotoxicity, phytotoxicity, and alpha-amylase inhibitory activities were assessed. In the DPPH assay, *Sargassum sp.* showed the strongest radical scavenging activity ($IC_{50} = 1593.50 \pm 5.23$ mg/L), followed by *Hypnea sp.* ($IC_{50} = 2924.70 \pm 1.62$ mg/L) and *Chaetomorpha sp.* ($IC_{50} = 3662.40 \pm 6.50$ mg/L). However, all were significantly ($p < 0.05$) less effective than the ascorbic acid control ($IC_{50} = 7.90 \pm 0.10$ mg/L). FRAP values of species are *Sargassum sp.* 0.07 ± 5.86 $\mu\text{mol Fe}^{2+}\text{g}^{-1}$, *Hypnea sp.* 0.07 ± 4.32 $\mu\text{mol Fe}^{2+}\text{g}^{-1}$, and *Chaetomorpha sp.* 0.07 ± 5.02 $\mu\text{mol Fe}^{2+}\text{g}^{-1}$. This result showed similar antioxidant capacities among the three species. Cytotoxicity screening displayed that *Hypnea sp.* had the lowest LC_{50} (1869.70 ± 18.65 mg/L), indicating higher toxicity compared to *Sargassum sp.* (3414.60 ± 12.56 mg/L) and *Chaetomorpha sp.* (19661.70 ± 24.236 mg/L). Phytotoxicity tests showed varied effects on shoot and root growth. *Sargassum sp.* and *Hypnea sp.* showed both inhibitory and stimulatory effects depending on the concentration. In the alpha-amylase inhibition test, *Hypnea sp.* had the highest inhibitory activity ($IC_{50} = 186.20 \pm 4.45$ mg/L), followed by *Sargassum sp.* ($IC_{50} = 625.50 \pm 5.96$ mg/L). The positive control, acarbose, was significantly ($p < 0.05$) more effective ($IC_{50} = 45.99 \pm 0.07$ mg/L). Bioactivity studies on these seaweed species from Chilaw and Kalpitiya coasts of Sri Lanka have not been conducted previously. This study provides a preliminary foundation for more comprehensive future investigations into impact of geographic location, environmental conditions, and harvesting time on the bioactive compound profile of marine microalgae.

Keywords: Alpha-amylase inhibition, antioxidant activity, cytotoxicity, marine macroalgae.