

Proceedings of the

YOUNG SCIENTISTS' CONFERENCE ON MULTIDISCIPLINARY RESEARCH

VIRTUAL INTERNATIONAL CONFERENCE

2025

Organized by
The Young Scientists' Association
National Institute of Fundamental Studies, Sri Lanka.

In vitro bioactivity evaluation of leaf extracts of Sri Lankan plants *Osbeckia octandra* and *Crotalaria pallida* Aiton

**H.M.D.D. Karunadasa¹, H.A.K.D. Premasiri¹, K.G. Nelum P. Piyasena^{1*}, N.K.B. Adikaram¹,
L. Jayasinghe¹**

¹*National Institute of Fundamental Studies, Kandy, Sri Lanka*

^{*}*nelum.pi@nifs.ac.lk*

The rising demand for natural alternatives to synthetic herbicides and therapeutic agents has prompted research into plant-derived bioactive compounds. This study aimed to evaluate the biological activities of methanolic leaf extracts of *Osbeckia octandra* and *Crotalaria pallida* Aiton. Shade-dried, powdered leaf material was subjected to ultrasonic-assisted extraction using methanol, and crude extracts were concentrated using rotary evaporation. Antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and Ferric Reducing Antioxidant Power (FRAP) assay. Phytotoxic and cytotoxic potentials were evaluated using the lettuce (*Lactuca sativa*) seed germination assay and brine shrimp (*Artemia salina*) lethality bioassay, respectively. Enzymatic inhibition assays targeting α -amylase, α -glucosidase, and pancreatic lipase were performed only for *O. octandra* at a concentration of 1000 mg L⁻¹. *O. octandra* showed strong DPPH radical scavenging activity ($IC_{50} = 9.39 \pm 0.09$ mg L⁻¹) compared to *C. pallida* ($IC_{50} = 483.80 \pm 10.10$ mg L⁻¹) and ascorbic acid ($IC_{50} = 7.90 \pm 0.10$ mg L⁻¹). The FRAP values were recorded as 1.75 ± 0.13 mmol Fe²⁺/g for *O. octandra*, 0.49 ± 0.02 mmol Fe²⁺/g for *C. pallida*, and 1.26 ± 0.01 mmol Fe²⁺/g for Trolox. Phytotoxicity assay showed weak shoot and root inhibition in *O. octandra*, while *C. pallida* had moderate activity (Minimum inhibition concentration (MIC) between 250 – 500 mg L⁻¹; positive control: abscisic acid 10 mg L⁻¹). *C. pallida* also exhibited notable cytotoxicity ($LC_{50} = 20.03 \pm 2.05$ mg L⁻¹) compared with *O. octandra* and K₂Cr₂O₇ as positive control ($LC_{50} = 7.90 \pm 0.10$ mg L⁻¹). *O. octandra* showed strong α -glucosidase ($99.92 \pm 0.13\%$) inhibition compared to acarbose ($88.97 \pm 0.22\%$) and α -amylase inhibition ($65.32 \pm 3.08\%$) compared to acarbose ($57.51 \pm 4.33\%$) as the positive control. Lipase inhibition of *O. octandra* was lower ($16.51 \pm 5.27\%$) than orlistat ($68.00 \pm 14.53\%$) as the positive control. These findings suggest *O. octandra* may serve therapeutic roles, while *C. pallida* shows herbicidal potential, and further investigation could explore potential for development into natural herbicides and therapeutic agents.

Keywords: Antioxidant activity, cytotoxicity, enzyme inhibition, phytotoxicity