

Scientia et Innovatio: Vision to Venture

Proceedings of the YOUNG SCIENTISTS' CONFERENCE ON MULTIDISCIPLINARY RESEARCH

VIRTUAL INTERNATIONAL CONFERENCE

2025

Organized by
The Young Scientists' Association
National Institute of Fundamental Studies, Sri Lanka.

Comparative *in vitro* evaluation of antioxidant, cytotoxic, antidiabetic, and phytotoxic activities of *Annona reticulata* L. plant parts

H.W.D.K. Hathurusinghe¹, Y.G.A.D.K. Bandara¹, D.S. Jayaweera¹, K.G. Nelum.P. Piyasena^{1*}, N.K.B. Adikaram¹, L. Jayasinghe¹

¹National Institute of Fundamental Studies, Kandy, Sri Lanka

^{*}nelum.pi@nifs.ac.lk

Annona reticulata L. (commonly known as custard apple) is well recognized for its traditional use in medicine; however, the comparative evaluation of its different parts has received limited scientific attention. This study investigated the antioxidant, antidiabetic, cytotoxic, and phytotoxic activities of methanolic extracts of leaves and seeds, as well as aqueous extracts of fruit pulp. Antioxidant capacity was evaluated by ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Cytotoxicity was evaluated by the brine shrimp lethality bioassay while antidiabetic activity was determined using α -amylase inhibition assay. Phytotoxicity was evaluated through a lettuce seed (*Lactuca sativa*) germination bioassay. Among the tested samples, the leaf extract demonstrated the highest antioxidant activity, with a FRAP value of $1254 \pm 32 \mu\text{mol Fe}^{2+}/\text{g}$, which was nearly comparable to the standard antioxidant Trolox ($1261 \pm 11 \mu\text{mol Fe}^{2+}/\text{g}$). It also exhibited moderate DPPH radical scavenging activity (IC_{50} : $132.6 \pm 3.94 \text{ mg/L}$), compared with the positive control, ascorbic acid (IC_{50} : $7.90 \pm 0.10 \text{ mg/L}$). In the cytotoxicity assay, the leaf extract showed substantial activity (LC_{50} : $0.5239 \pm 0.2418 \text{ mg/L}$) and moderate phytotoxic effect, with 48.09% root growth inhibition at 1000 mg/L. The seed extract showed the strongest cytotoxicity (LC_{50} : $0.0610 \pm 0.000 \text{ mg/L}$), exceeding that of the positive control. It also displayed moderate antioxidant potential (FRAP: $574 \pm 8 \mu\text{mol Fe}^{2+}/\text{g}$), but showed lower phytotoxicity compared to the leaf extract. The fruit pulp extract recorded the lowest antioxidant activity (FRAP: $274 \pm 25 \mu\text{mol Fe}^{2+}/\text{g}$) and exhibited mild cytotoxicity, with only 10% lethality at 1000 mg/L. It showed moderate α -amylase inhibitory activity ($13.45 \pm 4.76\%$), which was lower than that of the standard antidiabetic agent acarbose ($59.82 \pm 4.10\%$). In summary, the leaf extract showed notable antioxidant and moderate phytotoxic potential, making it a candidate for antioxidant and allelopathic research. The seed extract may be valuable in therapeutic or anticancer research due to its high cytotoxicity. The fruit pulp extract, though weaker overall, shows mild cytotoxic and antidiabetic activities. These findings support the need for further isolation and characterization of bioactive compounds from different parts of *Annona reticulata* for pharmaceutical and agricultural applications.

Keywords: *Annona reticulata* α -amylase inhibition, antioxidant activity, cytotoxicity, medicinal plant extract, phytotoxicity

