RESCON 2025 PS 17

LIGHT SOAKING EFFECT ON THE PERFORMANCE OF Sb₂S₃ BASED SOLAR CELLS UNDER LOW LIGHT INTENSITY

M. Sarathchandra^{1,2}* and J. Bandara¹

¹National Institute of Fundamental Studies, Kandy, Sri Lanka.

²Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka.

*madara.sa@nifs.ac.lk

Antimony sulphide (Sb₂S₃) solar cells have achieved the highest efficiency of 7.69% in practice; however, it is lower than theoretical predictions. The main drawback of Sb₂S₃ solar cells is the defects in the bulk, grain boundaries, and at interfaces. The light soaking effect (LSE) was observed in FTO/TiO₂/Sb₂S₃/P3HT/carbon solar cells, which were fabricated via a modified solar cell configuration utilising a novel spin coating approach. The solar cells were then characterised to identify the reasons behind LSE because improving the stability of Sb₂S₃ solar cells requires the suppression of LSE. Overall, the initial measurements of these solar cells resulted in efficiency of 0.1 - 0.5%, short circuit current density (J_{SC}) of 1 – 4 mA cm⁻², open circuit voltage (V_{OC}) of 0.1 – 0.5 V and fill factor of 0.25 - 0.30; however, with illumination, J_{SC} enhanced while V_{OC} decreased slightly. Even though the rate of change in J_{SC} with illumination time was similar, it can be improved by passivating the bulk Sb₂S₃ layer, enhancing charge transfer, and decreasing its thickness. Additionally, when solar cells were evaluated temporarily, improvement of 4.14 - 17.65% in J_{SC} was observed without any illumination. Therefore, it was suspected that defects in fabricated solar cells generate heat. At low intensities, solar cells demonstrated higher performance in I-V plots. When $V_{\rm OC}$ versus intensity plot was elucidated, these solar cells had trap-assisted recombination at the lower intensity $(\approx 20 \text{ mW} \text{ cm}^{-2})$ and bimolecular recombination at the higher intensity. If these recombination processes could be minimised, it would be possible to achieve better performing Sb₂S₃ solar cells with minimum LSE. Moreover, the major suspected locations of defects in these solar cells are found to be in the grain boundaries and interfaces of the Sb₂S₃ layer.

Keywords: Bimolecular recombination, Illumination time, Light soaking effect, Low intensity, Trap-assisted recombination