

Proceedings of the

YOUNG SCIENTISTS' CONFERENCE ON MULTIDISCIPLINARY RESEARCH

VIRTUAL INTERNATIONAL CONFERENCE

2025

Organized by
The Young Scientists' Association
National Institute of Fundamental Studies, Sri Lanka.

Evaluation of antioxidant and bioactivity potential of *Saraca indica* and *Erythrina subumbrans* flowers

K.R.D.A.K. Kahandawa¹, S.A.D. Chathurangi¹, D.S. Jayaweera¹, K.G. Nelum P. Piyasena^{1*}, N.K.B. Adikaram¹, L. Jayasinghe¹

¹*National Institute of Fundamental Studies, Kandy, Sri Lanka*

*nelum.pi@nifs.ac.lk

The exploration of the bioactivity potential of medicinal plants is essential for understanding their therapeutic properties; however, the research studies on the flowers of *Saraca indica* (Asoka) and *Erythrina subumbrans* (December Tree) remain limited. This study addresses the gap by focusing on the bioactivity of the flowers collected from Central Province, Sri Lanka. The samples were shade-dried, ground into a fine powder, and extracted with methanol using an ultra-sonication technique. The resulting extracts were concentrated using a rotary evaporator followed by drying in a vacuum oven. The crude methanolic extracts were subsequently evaluated for their antioxidant potential using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and the Ferric Reducing Antioxidant Power (FRAP) assay. Additionally, the extracts were assessed for cytotoxic activity via the brine shrimp (*Artemia salina*) lethality assay, phytotoxic activity through the lettuce (*Lactuca sativa*) seed germination assay, and α -glucosidase inhibitory activity. The results demonstrated that *S. indica* flowers possess significant antioxidant activity, as evidenced by a DPPH radical scavenging IC_{50} value of $32.29 \pm 5.00 \text{ mg L}^{-1}$, compared to the positive control ($7.90 \pm 0.10 \text{ mg L}^{-1}$). The extracts also exhibited strong ferric reducing capacity, with a FRAP value of $1693.51 \pm 27.05 \text{ } \mu\text{mol FeSO}_4 \text{ g}^{-1}$, closely comparable to the positive control ($1692.19 \pm 0.01 \text{ } \mu\text{mol FeSO}_4 \text{ g}^{-1}$). Furthermore, *S. indica* showed remarkable α -glucosidase inhibitory activity, $99 \pm 0.33\%$ inhibition at a concentration of 1000 mg L^{-1} . *E. subumbrans* flower extracts exhibited weak antioxidant activity, with a FRAP value of $310.98 \pm 8.18 \text{ } \mu\text{mol FeSO}_4 \text{ g}^{-1}$ and DPPH IC_{50} value of $469.49 \pm 10.54 \text{ mg L}^{-1}$, when compared to the respective positive controls. In the cytotoxicity assay, *S. indica* exhibited weak cytotoxic potential, with an LC_{50} value of $696.01 \pm 30.66 \text{ mg L}^{-1}$, compared to the positive control, potassium dichromate ($K_2Cr_2O_7$), which had an LC_{50} of $7.93 \pm 1.06 \text{ mg L}^{-1}$. Similarly, *E. subumbrans* also displayed weak cytotoxic activity in this assay. In the lettuce seed germination assay, both *S. indica* and *E. subumbrans* flower extracts exhibited weak phytotoxic activity at a concentration of 1000 mg L^{-1} . In conclusion, the notable antioxidant capacity and strong α -glucosidase inhibitory activity suggest that *S. indica* flowers warrant further investigation for potential applications in pharmaceutical development.

Keywords: Antidiabetic, DPPH, FRAP, Medicinal flowers