

Proceedings of the

YOUNG SCIENTISTS' CONFERENCE ON MULTIDISCIPLINARY RESEARCH

VIRTUAL INTERNATIONAL CONFERENCE

YSCMR 2024

Paper ID: CMT-082

In vitro antioxidant, cytotoxic, and phytotoxic potential of some Sri Lankan medicinal plants

<u>D. Pasqual</u>¹, W.W.M.T.R. Wekadapola¹, J. Kalinga¹, U. Siriwardhane¹, N.P. Piyasena¹, N.K.B. Adikaram¹, J.M.N. Marikkar¹, L. Jayasinghe^{1*}

¹National Institute of Fundamental Studies, Kandy, Sri Lanka

*ulbj2003@yahoo.com

This study aims to determine the antioxidant potential, cytotoxicity, and phytotoxicity of medicinally important Alpinia calcarata rhizome ('Araththa'), Sida alnifolia leaves ('Babila') and Tinospora cordifolia stem ('Rasakinda'). Firstly, these plants were collected, cleaned, airdried, and ground into fine powders. They were extracted into methanol by sonication and evaporated to dryness. The crude extracts were tested for antioxidant activity by the 2,2diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, phytotoxicity by the lettuce seed germination assay, and cytotoxicity by brine shrimp lethality assay. The results of the DPPH radical scavenging assay showed that A. calcarata exhibited a strong antioxidant potential with an IC₅₀ of 34.53 mg L^{-1} followed by T. cordifolia (IC₅₀ 130.47 mg L^{-1}) and S. alnifolia (179.23 mg L⁻¹) compared to positive control ascorbic acid IC₅₀ 1.90 \pm 0.01 mg L⁻¹. For the brine shrimp lethality assay positive control $K_2Cr_2O_7$ showed LC_{50} of 34.40 ± 0.30 mg L^{-1} whereas A. calcarata and T. cordifolia resulted in moderate cytotoxicity with LC₅₀ of 249.99 mg L⁻¹ and 275.57 mg L⁻¹ respectively. The root elongation inhibition resulted in the lettuce seed assay can be aligned as T. cordifolia (IC₅₀ 172.46 mg L⁻¹), A. calcarata (IC₅₀ 635.02 mg L⁻¹) and S. alnifolia (IC₅₀ 1322.83 mg L⁻¹). Whereas, their shoot elongation inhibition can be aligned as S. alnifolia (IC₅₀ 193.35 mg L⁻¹), A. calcarata (IC₅₀ 420.17 mg L⁻¹), and T. cordifolia (IC₅₀ 1317.52 mg L⁻¹). However, none of them showed strong root or shoot elongation inhibition potentials as positive control; abscisic acid which resulted IC₅₀ 1.46 \pm 0.19 mg L⁻¹ and 1.85 \pm 0.31 mg L⁻¹ for root and shoot elongation inhibitions respectively. Based on these findings, it can be concluded that A. calcarata rhizome extract contains a remarkable antioxidant potential and moderate cytotoxicity similar to T. cordifolia. T. cordifolia and S. alnifolia extracts have moderate phytotoxicity against root and shoot elongation respectively.

Keywords: Alpinia calcarata, DPPH, Sida alnifolia, Tinospora cordifolia