

Proceedings of the YOUNG SCIENTISTS' CONFERENCE ON MULTIDISCIPLINARY RESEARCH

VIRTUAL INTERNATIONAL CONFERENCE

Paper ID: CMT-095

In vitro bioactive potential of leaf extracts from *Hyptis capitata*, Plectranthus *zaterhendi* and *Bauhinia variegata*

<u>C.N. Premasinghe</u>¹, J. Kalinga¹, U. Siriwardhane¹, N.P. Piyasena¹, J.M.N. Marikkar¹, N.K.B. Adhikaram¹, L. Jayasinghe^{1*}

¹National Institute of Fundamental Studies, Kandy, Sri Lanka

^{*}ulbj2003@yahoo.com

The exploration of medicinal plants for bioactive compounds is crucial due to their potential therapeutic applications in treating various health conditions. This study investigated some bioactivities of leaf extracts of three plant species from Sri Lanka, Hyptis capitata ('Knobweed'), Plectranthus zatarhendi ('Iriweriya'), and Bauhinia variegata ('Koboleela'), collected from the Central Province. After shade drying, grinding, and extraction into methanol, the extracts were tested for bioassays: DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and FRAP (Ferric Reducing Antioxidant Power) assays for antioxidants, α-amylase and lipase assays for antidiabetic and antiobesity effects, and brine shrimp lethality for cytotoxicity. H. capitata exhibited the strongest antioxidant activity (IC₅₀ 11.36 \pm 0.15 mg L⁻ ¹) in the DPPH assay, compared to the positive control ascorbic acid (IC₅₀ $1.97 \pm 0.02 \text{ mg L}^{-1}$). *P. zatarhendi* and *B. variegata* displayed moderate antioxidant effects with IC₅₀ 169.69 \pm 3.39 mg L⁻¹ and 204.34 \pm 2.04 mg L⁻¹, respectively. The results of the FRAP assay corroborated these findings, with *H. capitata* recording the highest value $(1.62 \pm 0.02 \mu mol FeSO4 /mg)$, followed by *P. zatarhendi* $(0.427 \pm 0.01 \mu mol FeSO_4 / mg)$ and *B. variegata* $(0.799 \pm 0.01 \mu mol$ FeSO₄ /mg). The positive control, Trolox, showed a value of $12.07 \pm 0.03 \mu$ mol FeSO₄/mg. B. *variegata* demonstrated strong α -amylase inhibitory activity (IC₅₀ 52.35 ± 3.31 mg L⁻¹), almost similar to the positive control acarbose (IC₅₀ 45.99 \pm 3.97 mg L⁻¹) and moderate lipase inhibition (IC₅₀ 150.75 \pm 5.26 mg L⁻¹), compared to the positive control Orlistat (IC₅₀ of $3.05\pm1.71 \text{ mg L}^{-1}$). P. zatarhendi showed weak activity in both assays (IC₅₀ 675.46 ± 12.13 mg L^{-1} for α -amylase and IC₅₀ 901.27 ± 15.53 mg L^{-1} for lipase). *H. capitata* exhibited IC₅₀ > 1000 mg L⁻¹ in both enzyme inhibitory assays. P. zatarhendi exhibited notable cytotoxicity (LC₅₀ 311.00 mg L⁻¹), compared to the positive control K₂Cr₂O₇ (LC₅₀ 35.16 mg L⁻¹), whereas B. variegata showed lower cytotoxicity (LC₅₀ 809.65 mg L⁻¹). H. capitata exhibited weak cytotoxic effects. Overall, these findings highlight the potential of these plant species as sources of bioactive compounds for antioxidant, antidiabetic, and antiobesity therapeutic applications, emphasizing the need for further investigation into their specific chemical constituents.

Keywords: Antidiabetic, antioxidant, B. variegata, H. capitata, P. zatarhendi