

Proceedings of the YOUNG SCIENTISTS' CONFERENCE ON MULTIDISCIPLINARY RESEARCH

VIRTUAL INTERNATIONAL CONFERENCE

Paper ID: CMT-071

The effect of a thin ZnS passivation layer on q-dot AgBiS₂ for enhancing the solar cell performance

<u>R.P.P.D Rajakaruna</u>¹, J. Bandara^{1*}

¹National Institute of Fundamental Studies, Kandy, Sri Lanka

* jayasundera.ba@nifs.ac.lk

Quantum dot solar cells fabricated with innovative ternary semiconductor materials are emerging as a viable alternative to thin-film solar cells made from CdS and CdTe. Among them, AgBiS₂, a non-toxic ternary semiconductor material with a high absorption coefficient, mobility, and configurable band gap, is the forefront material. Coating a wide band gap material such as ZnS on quantum dots notably impacts their performance. In this study, AgBiS₂ quantum dots were prepared on a TiO₂ mesoporous layer using the successive ionic layer adsorption and reaction (SILAR) method, and solar cell performance was observed by coating a ZnS layer between the TiO₂/AgBiS₂ q-dot interface and the AgBiS₂/polysulfide electrolyte interface. The formation of AgBiS₂ and ZnS can be confirmed by XRD, EDS, and TEM analysis. The cell configuration FTO/m-TiO₂/AgBiS₂/polysulfide electrolyte/Cu₂S-brass without a ZnS layer demonstrated an efficiency of 0.59%. One SILAR cycle at the TiO₂/AgBiS₂ interface and two SILAR cycles at the AgBiS₂/polysulfide electrolyte interface give the best ZnS coating efficiency of 0.7% and 0.8%, respectively. Using an optimal ZnS layer in the FTO/m-TiO₂/ZnS(I)/AgBiS₂/ZnS(II)/polysulfide electrolyte/Cu₂S-brass configuration boosts efficiency to 0.94%. UV-Vis spectra of the FTO/m-TiO₂/ZnS(I)/AgBiS₂ cell configuration indicated an increase in light absorption after the first SILAR cycle, followed by a decrease in absorbance with subsequent cycles of AgBiS₂. For the TiO₂/AgBiS₂/ZnS(II) configuration, UV-Vis spectra indicated that ZnS coating enhanced the light absorption properties of AgBiS₂ quantum dots and induced a slight blue shift in the absorption peak after the first and second SILAR cycles. Subsequent coating of ZnS leads to the red-shift of absorption peak while decreasing the light absorption by AgBiS₂. Optimizing the number of ZnS cycles at both the TiO₂/AgBiS₂ q-dot and AgBiS₂/polysulfide electrolyte interfaces can enhance solar cell efficiency and the efficiency can be further improved by incorporating optimal ZnS layers FTO/m-TiO₂/ZnS/AgBiS₂/ZnS/polysulfide electrolyte/Cu₂S-brass within the cell configuration.

Keywords: *Quantum dots solar cell*