Abstract No: 70

Physical Sciences

IMPACT OF POST-ANNEALING TEMPERATURE ON SILVER BISMUTH SULFIDE QUANTUM DOT-SENSITIZED SOLAR CELLS FABRICATED BY SUCCESSIVE IONIC LAYER ADSORPTION AND REACTION METHOD

<u>R.P.P.D. Rajakaruna</u> and J. Bandara^{*}

National Institute of Fundamental Studies, Kandy, Sri Lanka *jayasundera.ba@nifs.ac.lk

Nontoxic semiconductor materials are becoming increasingly used for solar cell fabrication and among them, silver bismuth sulfide (AgBiS₂) is a forefront ternary semiconductor material. AgBiS₂ nanocrystal has a high absorption coefficient, high mobility, and tunable bandgap. In this study, the performance of AgBiS₂ quantum dot-sensitized solar cells was investigated based on post-annealing temperature. AgBiS₂ quantum dots (QDs) were deposited on a TiO₂ mesoporous layer using the successive ionic layer adsorption and reaction (SILAR) method, with the optimal number of SILAR cycles being determined to be three. After deposition, AgBiS₂ QDs solar cells were kept overnight and subsequently annealed at 50, 100, 150 and 200 °C for one hour on a hotplate in ambient air. Raising the annealing temperature to 100 °C increased the short-circuit current density, open-circuit voltage, and fill factor. However, further increasing the annealing temperature resulted in degradation of solar cell performance. The cell with the configuration of FTO/m-TiO₂/AgBiS₂/polysulfide-electrolyte/Cu₂S-brass plate annealed at 100 °C has the maximum power conversion efficiency of 0.6%. The observed variations in solar cell performance of FTO/m-TiO₂/AgBiS₂/polysulfide-electrolyte/Cu₂S-brass plate electrodes have a direct relationship with the post-annealing temperature of AgBiS₂ QDs. Transmission electron microscopy study showed the formation of AgBiS₂ QDs with crystalline phases of 200 and 220 for the pre-annealed AgBiS₂ QDs at 100 °C, and Energy-dispersive X-ray spectroscopy data validated the presence of Ag, Bi, and S on the TiO₂ mesoporous layer. X-ray diffraction analysis revealed that post-annealing of AgBiS₂ film enhanced the 111 and 222 crystalline phases, while the 200 and 220 crystalline phases increased up to 100 °C and subsequently decreased. UV-Vis spectra revealed that increasing the annealing temperature up to 100 °C increased the absorption of AgBiS₂ QDs, whereas above 100 °C absorbance was reduced and the absorption peak was red shifted by 70 nm.

Keywords: AgBiS₂, Crystallinity, Nontoxic, Post-annealing