

කැලණිය විශ්වවිදහාලය களனி பல்கலகை்கழகம UNIVERSITY OF KELANIYA Faculty of Graduate Studies

23rd

International Postgraduate Research Conference (IPRC) 2023

Enrichment Of Academic Strength Through Research

Organized by

FACULTY OF GRADUATE STUDIES UNIVERSITY OF KELANIYA, SRI LANKA

ABSTRACT VOLUME

23rd Conference on Postgraduate Research

International Postgraduate Research Conference (IPRC) - 2023

"Enrichment of academic strength through research"

Abstracts

24th November 2023

Faculty of Graduate Studies University of Kelaniya, Sri Lanka © 2023 - Faculty of Graduate Studies

23rd Conference on Postgraduate Research

International Postgraduate Research Conference (IPRC) - 2023

"ENRICHMENT OF ACADEMIC STRENGTH THROUGH RESEARCH"

Responsibility of the content of the abstracts included in this publication remains with the respective authors.

 Web
 : https://conf.kln.ac.lk/iprc/index.php

 Email
 : iprc@kln.ac.lk

 Telephone:
 +9411 2 903952/3

 ISSN (E-Copy)
 : 3021-6931

 ISSN (Hard copy)
 : 3021-6923

 ISBN (E-Copy)
 : 978-624-5507-44-3

 ISBN (Hard copy)
 : 978-624-5507-45-0

Published by Faculty of Graduate Studies University of Kelaniya Sri Lanka

Cover Design : Mr. H.L.I.E.Madhusankha **Layout Design:** Ms. D.S.R.E.S.Gunawardhana

Abstract No: STMM 42

Science, Technology, Mathematics and Medicine

Electrochemical performance of n-type Cu₂O anode material synthesized by electrodeposition method for rechargeable lithiumion batteries

Fernando W. T. R. S.^{1,*}, Amaraweera T. H. N. G.², Wijesundera R.P.³ and

Wijayasinghe H.W.M.A.C.¹

¹National Center for Advanced Battery Research, National Institute of Fundamental Studies, Sri Lanka ²Department of Applied Erath Sciences, Uva Wellassa University, Sri Lanka ³Department of Physics and Electronics, University of Kelaniya, Sri Lanka

Recently, Cu₂O has received more attention for the anode application of the rechargeable Lithium-Ion Battery (LIB) than the other competing materials because of its high theoretical capacity (375 mAhg⁻¹), good capacity retention, affordability, non-toxicity and ease of storage. The electrochemical performance of Cu₂O typically depends on its crystallinity and morphology, which significantly based on the synthesizing technique. However, a simple and convenient electrodeposition technique, which can improve crystallinity with favorable morphology for electrode materials, has not yet been studied for synthesizing Cu₂O. Hence, this study aims for preparing n - type Cu₂O anode materials by the electrodeposition method with enhanced crystallinity and morphology. The lithium-ion rechargeable coin cells were assembled in an argon-filled glove box with anodes fabricated with synthesized Cu₂O, lithium as the reference electrode and counter electrodes together with the non-aqueous electrolyte of 1M LiPF₆ in ethylene carbonate and dimethyl carbonate (1:1 wt%). The assembled coin cells subjected to galvanostatic charge-discharge tastings revealed a significantly high initial specific discharge capacity of 623.9 mAhg⁻¹ at a rate of 0.2C. That is even after it reported a higher irreversible capacity of 395.4 mAhg⁻¹ at the first cycle. Moreover, it displayed a discharge capacity of 200.3 mAhg⁻¹ and a noticeably lower irreversible capacity of 2.6 mAhg⁻¹ even after 50 cycles. The improved electrochemical performance can mainly be ascribed for the enhanced contact surface area for Cu₂O and electrolyte. It could have resulted due to the enhanced contact between Cu₂O and electrolyte by decreasing diffusion lengths for lithium ions. Electrochemical impedance spectroscopy and cyclic voltammetry analyses also provided evidences for improved electrochemical performance. Altogether, this study reveals that n-type Cu₂O synthesized by electrodeposition method processes very promising electrochemical performance for the anode application of LIB. Hence, this study reveals that Cu₂O synthesized by simple, cost-effective, electrodeposition method has very promising electrochemical performance for the anode application of nextgeneration high-performance LIBs.

Keywords: Anode materials, Cu₂O, Electrodeposition, Li-ion battery

 $^{\#}$ This version cannot be considered as evidence of this publication – final version is available at https://conf.kln.ac.lk/iprc/

^{*} roshanrsff@gmail.com