Electrochemical performance of Cu₂O anode material synthesized by electrodeposition method for rechargeable lithium-ion batteries

<u>W. T. R. S. Fernando</u>^{1*}, T. H. N. G. Amaraweera^{2,} R.P. Wijesundera³ and H.W.M.A.C. Wijayasinghe¹

¹National Center for Advanced Battery Research, National Institute of Fundamental Studies, Sri Lanka, ²Department of Applied Erath Sciences, Uva Wellassa University, Sri Lanka ³Department of Physics and Electronics, University of Kelaniya, Sri Lanka *+94713638603, roshanrsff@gmail.com

Cu₂O is currently used for numerous applications, including gas sensors, solar energy conversion, photocatalysis and batteries. Recently, Cu₂O has received more attention for the anode application of the rechargeable Lithium-Ion Battery (LIB) than the other competing materials because of its high theoretical capacity (375mAhg⁻¹), good capacity retention, affordability, non-toxicity and ease of storage. The electrochemical performance of Cu₂O mainly depends on its crystallinity and morphology that significantly depend on the synthesizing technique. The electrodeposition method, which is a promising technique that improves the crystallinity with favorable morphology for electrode materials, has not been studied well for synthesizing Cu₂O. Hence, this study aims for preparing Cu₂O anode materials by the electrodeposition method with enhanced crystallinity and morphology. The coin cells were assembled in an argon-filled glove box with anodes fabricated with synthesized Cu₂O, lithium as the reference electrode and counter electrodes together with the non-aqueous electrolyte of 1M LiPF₆ in ethylene carbonate and dimethyl carbonate (1:1wt%). The galvanostatic chargedischarge tastings performed the assembled coin on cells showed a significantly high initial specific discharge capacity of 533 mAhg⁻¹ while maintaining high Coulombic efficiency of around 99% over 50 cycles. Even though it reported a higher irreversible capacity of 362.3 mAhg⁻¹ at the 1st cycle, it showed a significantly lower irreversible capacity of 0.2 mAhg⁻¹ for the 50th cycle. Electrochemical impedance spectroscopy and cyclic voltammetry analyses also provide improved electrochemical performance. Altogether this study reveals that Cu₂O synthesized by electrodeposition method processes very promising electrochemical performance for the anode application of LIB.

Topic:	New Energy Materials
Corresponding Author:	W. T. R. S. Fernando
	roshanrsff@gmail.com National Center for Advanced Battery Research, National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka

Presentation Type: Oral Presentation **Keywords:** Anode materials, Cu₂O, Electrodeposition, Li-ion battery