

Paper ID: CMT-101

Enhanced light harvesting and charge separation properties of the Ti/TiO₂ - Sb₂S₃ Schottky junction for enhanced Photoelectrochemical performance

Chathuranga N. Wijerathna¹, Jayasundera Bandara^{1*}

¹National Institute of Fundamnetal Studies (NIFS), Kandy, Sri Lanka

* jayasundera.ba@nifs.ac.lk

Photoelectrochemical (PEC) water splitting is a promising candidate for solar energy conversion, generating a sustainable source of energy in the form of chemical bonds without greenhouse gas emissions. In this work, we synthesized an Ag⁺ ion-doped Ti/TiO₂ nanotube Array Schottky junction through a facile electrochemical synthesis strategy. Subsequently, an n/n heterostructure was introduced by coating the TNTA photoanode with an n-type stibnite (Sb₂S₃) layer, (denoted as TNTA-Ag/Sb₂S₃) was chosen for its suitable band gap position and high visible light response. Scanning electron microscopy (SEM) was used to study the surface morphology, while X-ray photoelectron spectroscopies (XPS) was employed to showcase the elemental composition of the synthesized photoanode. We have successfully demonstrated that Ag⁺ ion doped TNTA/Sb₂S₃ shows a photocurrent density of 6.5 mA cm⁻² vs. RHE in 0.5 M Na₂SO₃ (pH ~ 9.5) under AM 1.5 G illuminations, which is almost 24 times and 1.8 times greater than that of the pristine TNTA and TNTA/Sb₂S₃ photoanodes, respectively. As per my knowledge, this is the highest phototresponse received and the first study has been carried out vet for TNTA-Ag/Sb₂S₃ photoanode in PEC water splitting applications. Moreover, the TNTA-Ag/Sb₂S₃ photoanode has shown the maximum Applied Bias Photon-to-Current Efficiency (ABPE) of 3.36%. It is suggested that the increased PEC performance of Ag⁺ ion-doped TNTA/Sb₂S₃ is due to the enhanced conductivity of TNTA resulting from increased oxygen vacancies formed, the broad optical activity of Sb₂S₃ and reduced recombination of photogenerated charge carriers.

Keywords: PEC, Stibnite, TNTA Schottky junction

Acknowledgement: Financial assistance from National Institute of Fundamental Studies (NIFS) is acknowledged