

RISTCON 2021

"Advancing Science & Technology towards an Eco-Sustainable Future"

Proceedings
of
8th Ruhuna International
Science & Technology Conference
February 17, 2021

Abstracts and Plenary Lectures

Faculty of Science University of Ruhuna Matara, Sri Lanka

Vein graphite/TiO₂ based composite counter electrode for dyesensitized solar cells

Senthuran S. 1,2,3* , Kumari J. M. K. W. 1,2 , Dissanayake M. A. K. L. 1 , Senadeera G. K. R. 1,4

¹National Institute of Fundamental Studies, Kandy, Sri Lanka
²Postgraduate Institute of Science, University of Peradeniya, Sri Lanka
³Department of Physics, University of Jaffna, Sri Lanka
⁴Department of Physics, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka

The counter electrode plays a crucial role in the performance of dvesensitized solar cells (DSSCs). It collects and transfers electrons from the external circuit to the electrolyte and facilitates regeneration process of the oxidized dye by catalysing the reduction of I_3^- redox species in the electrolyte. Platinum coated glass substrate has been widely used as counter electrode in the conventional DSSCs due to its high electrical conductivity and high catalytic activity. However, Platinum is an expensive and rare noble metal which is a major hurdle for large scale production of DSSCs. In this work, we have investigated the performance of DSSCs with vein graphite/TiO₂ based composite counter electrode. The power conversion efficiency was able to increase from 3.01% for pure vein graphite electrode to 5.29% for optimized composite vein graphite/TiO₂ electrode. This impressive enhancement in efficiency is mainly attributed to the improvement in the adhesion of graphite to FTO glass substrate upon the incorporation of TiO₂ electrochemical impedance spectroscopy, Furthermore, the voltammetry and Tafel polarization study reveal that the electrical properties of the graphite counter electrode improved with the incorporation of optimum amount of TiO₂.

Key words: Dye-sensitized solar cells, vein graphite, counter electrode, platinum free

Acknowledgement: Financial assistance from National Science Foundation of Sri Lanka (NSF/SCH/2019/05)

^{*}Corresponding author: senthur803@gmail.com