Synthesis of Novel Inhibitors of α -Glucosidase and Carbonic Anhydrase based on 1,2,3-Triazole Derivatives of Hydrochlorothiazide (HCT) through Click Chemistry Approach M. A. Ahamed Baheej^{1,2}, Hina Siddiqui¹, M. H. Haroon², M. Iqbal Choudhary¹, and U. L. B. Jayasinghe³ ¹H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan; ²Department of Chemical Sciences, Faculty of Applied Sciences, South Eastern University, Oluvil, Sri Lanka; ³National Institute of Fundamental Studies, Kandy, Sri Lanka; Email: baheej2011@gmail.com As of 2017, interest in diabetes is blowing up, as the number of people with diabetes expected to rise from the current estimated of 150-220 million in 2010 and 300 million in 2020 α -glucosidase and carbonic anhydrase inhibitors are thought to be valuable aids in the treatment of diabetes and glaucoma respectively. 6-Chloro-3,4dihydro-2H-1,2,4-benzothiazarsulphonamide1,1-dioxide is diuretic used for hypertension which is commonly referred to water pill. On the basis of these study, a library of 25 novels 1,2,3-triazole derivatives Hydrochlorothiazide was synthesized through click chemistry approach in order to find a more potent anti-diabetics and anti-glaucoma agents. The structures of all derivatives (2-27) confirmed by MS, IR, ¹H-NMR and ¹³C-NMR spectroscopic data. All the compounds found to be new. These derivatives were then evaluated for the first time for their α -glucos and carbonic anhydrase inhibitory activity. HCT, Compounds 2 and 23-27 were found to be more active (IC₅₀ = 14.4 ± 0.23 , 4.27 ± 0.297 , 4.1 ± 0.24 , 2.3 ± 0.129 , 7.2 ± 0.70 , 7.43 ± 0.186 $5.86 \pm 0.24 \,\mu\text{M}$, respectively) than the standard drug, Acetazolamide (IC₅₀ = $0.12 \pm 0.003 \,\mu\text{M}$ against Carbonic anhydrase and compounds 26 and 27 were found to be potent active (IC 379.26 ± 2.44 , 149.77 ± 1.53 μM , respectively) than the standard drug, Acarbose (IC₅₀ = 855) \pm 2.08 $\mu M)$ against $\alpha\text{-glucosidase}.$ All the compounds were found to be non-cytotoxic.