Proceedings of the **NATIONAL CONFERENCE ON MULTIDISCIPLINARY RESEARCH** VIRTUAL 2020 POSTGRADUATE SYMPOSIUM

"Inspiring Sri Lankan Youth for Tomorrow's Science"

NCMR 2020 08th October 2020

Organized by the Young Scientists' Association, National Institute of Fundamental Studies, Sri Lanka

Main Sponsor:

NCMR 2020

Proceedings of the National Conference on Multidisciplinary Research - 2020

Virtual Postgraduate Symposium

08th October 2020

"Inspiring Sri Lankan Youth for Tomorrow's Science"

i

Gel polymer electrolytes based on fumed silica filler for magnesium batteries

<u>H.T.G. Shashintha^{1,2*,}</u> H.N.M. Sarangika¹, V.P.S. Perera³, M.A.K.L. Dissanayake^{2,4}, G.K.R. Senadeera^{2,3}, J.M.K.W. Kumari^{2,4}

 ¹Department of Physical Science and Technology, Faculty of Applied Science, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
²National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
³Department of physics, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka
⁴ Postgraduate institute of Science, University of Peradeniya, Sri Lanka

*gayanshashintha94@gmail.com

The project was focused on designing a novel, low cost, highly conductive gel polymer electrolyte using fumed silica fillers and Mg²⁺ salt. Gel polymer electrolytes synthesized with fumed silica fillers, low molecular weight poly(ethylene glycol), average Mn 400 and Mg(BH₄)₂, exhibit conductivities $\sim 10^{-4}$ S/cm at room temperature (25 °C). Under this project, an electrolyte sample series was synthesized by varying the weight ratio of $Mg(BH_4)_2$: polyethylene glycol: fumed silica. and their conductivity measurements were taken at different temperatures ranging from 25 °C to 65 °C. The highest conductivity achieved was 1.9686 $\times 10^{-4}$ S/cm, and the corresponding sample consisted of 2.0 mg of Mg(BH₄)₂, 2.0 mL of poly(ethylene glycols), and 0.16 g of fumed silica. The electrolyte with the highest conductivity was used in a battery setup with a Mg pellet as the anode and TiO₂ mixture (TiO₂ - P₂₅ semiconductor powder, carbon powder and PVDF binder) as the cathode, made by doctor blading on to an FTO glass with 1 cm² area. The open circuit voltage (V_{OC}) of the battery of configuration Mg/Gel Electrolyte/TiO₂-C was measured through a circuit of an external 60 kΩ resistance. At 25 °C the open circuit voltage was 1.722 V. The battery was run for 48 hours straight and the V_{OC} values were measured at every 2 hours. The V_{OC} value was stabilized at 1.418 V after the initial 48-hour period. The short circuit current density was also stabilized at 73.6118 μ A/cm² after 48 hours of discharge period through 60 k Ω load, from the initial current density of 179.5211 μ A/cm². This preliminary study concludes that the prepared electrolyte has high stability. Possibility of using this electrolyte in rechargeable Mg batteries will be studied.

Keywords: SiO₂, magnesium borohydride, PEG, titanium dioxide